不同贮藏期水蜜桃硬度及糖度的检测研究

刘燕德,张 雨,姜小刚,孙旭东,徐 海,刘昊辰

华东交通大学机电与车辆工程学院,水果智能光电检测技术与 装备国家地方联合工程研究中心,江西南昌 330013

摘 要 糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流 失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖 度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜 桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高, 且在 650~680 nm 区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在 贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射 校正、S-G 卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息 变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬 度的预测模型。分析糖度、硬度的 PLS 回归系数与平均光谱的波形发现, 糖度的高回归系数分布在光谱多 处, 而硬度的该系数均在波峰波谷附近。SPA 和 UVE 筛选的特征波长建立的糖度模型效果不佳, 而硬度模 型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(R,)及预测均方根误差 (RMSEP)分别为 0. 886, 0.727 和 0.820, 1.003, 预处理方法分别是多元散射校正、平滑窗口宽度为 3 的 S-G卷积平滑。此外,漫透射建立的硬度 SPA-PLS 模型,选用 15 个光谱变量,得到的 R。和 RMSEP 为 0.798 和 0.976; 而漫反射建立的 UVE-PLS 模型, 选用 113 个光谱变量, 得到的 R。和 RMSEP 为 0.841 和 0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外 光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖 时间和减少腐烂具有一定的参考价值。

关键词 可见/近红外光谱;水蜜桃贮藏;糖度和硬度;偏最小二乘回归 中图分类号:O657.3 文献标识码:A DOI:10.3964/j.issn.1000-0593(2021)01-0243-07

引 言

糖度(SSC)和硬度是水蜜桃的重要品质属性,决定了水 蜜桃品质的高低,也是消费者购买时关心的问题。水蜜桃大 多成熟于夏季,高温天气下,成熟的水蜜桃采摘后迅速软 化,内部品质变化明显。在运输及售卖期间,水蜜桃处于常 温下保存,果内水分流失,风味有所提高,表面开始松软, 糖度和硬度变化明显。因此,检测水蜜桃常温下贮藏期间的 糖度和硬度变化,对指导采摘期及货架期具有重要意义。

可见/近红外光谱技术是水果品质评价中最常用的无损 检测技术之一,能够快速、无损的检测水果的内部品质^[1-2]。 近红外光谱技术已在多种水果检测中成功应用,主要用于检 测水果内部的糖酸度等^[3-4]。潘磊庆等^[5]使用近红外光谱对 货架期内水蜜桃糖度进行检测;Huang等^[6]使用两种便携式 近红外光谱仪对六种成熟度番茄的多种硬度参数进行预测分 析;Uwadaira Y等^[7]使用可见/近红外光谱检测桃的果肉硬 度,用以评价桃的成熟度。可见/近红外光谱技术研究水蜜 桃的现有报道中,水蜜桃贮藏期的研究不少,但几乎都是研 究单一指标,较少综合分析糖度和硬度,且研究效果并不理 想。目前对水蜜桃的研究多为静态单一检测方式,多方式及 动态检测较少;且常用的测定果实硬度的方法是穿刺试 验^[6-7],检测过程损坏样品。使用多种检测方式研究水蜜桃 贮藏期糖度和硬度的无损检测技术具有重要意义。本研究在 使用可见/近红外光谱技术,建立不同贮藏期水蜜桃糖度及 硬度的无损检测模型。具体目标是:(1)使用两种检测方式

收稿日期: 2019-12-27,修订日期: 2020-05-21

基金项目:国家自然科学基金项目(31760344),水果光电检测技术能力提升项目(S2016-90),江西省教育厅科学技术研究项目(GJJ60516)资助 作者简介:刘燕德,1967年生,华东交通大学机电与车辆工程学院教授 e-mail:jxliuyd@163.com

采集不同贮藏阶段水蜜桃的光谱,测量水蜜桃的糖度和硬度 (2)采用合适的预处理方法来减小噪声和误差对光谱的影响, 并使用两种波长选择算法及特征波长,建立糖度和硬度模型,并选择最佳的预测模型。

1 实验部分

1.1 样品

实验样品为果园新鲜采摘的"大土山"水蜜桃,其表面光 滑无损伤,样品总数为90个。实验前,所有样品均置于保鲜 袋中,并在常温(22~25℃)下保存以模拟水蜜桃售卖期间 的条件。样品分为4批,其中第一批 30个,余下三批各20 个。从初次测量起,每隔两天测量一批样品的光谱、糖度、 硬度和重量,实验周期共计6d。图1为实验时每个贮藏阶段 的样品,前期贮藏样品表面良好,4d之后样品表面开始松 软腐烂。

图 1 不同贮藏期的水蜜桃样品 Fig. 1 Peach samples of different storage periods

1.2 光谱采集

使用实验室自行研制的水果动态检测装备采集样品光 谱,装备搭载 QE65Pro 光谱仪(Ocean Optics, USA),所采 集的光谱为可见/近红外光谱,波长范围为 350~1 150 nm。 设备光路及光源分布如图 2,光源为 10 个 12 V/100 W 的卤 钨灯,位于样品两侧。光纤接收样品的光源信息并传输到光 谱仪及计算机中。使用漫透射和漫反射两种采集方式采集样 品光谱,两种方式采集方法基本相同,光纤分别在下方和上 方接收光谱信号,且漫反射为静态采集。每个样品按 90°间 隔标记赤道位置 4 个表面,采集光谱时,提前预热装备 20~ 30 min,待装置稳定之后,人为按标号进行光谱动态采集, 以保证光谱数据的可靠性。积分时间均设为100 ms,所得到 的光谱均已去除暗光谱。为了减少果核的影响,将样品按果 柄与运动方向一致,缝合线平行于果杯的方式放置,且出口 均有海绵垫用以防护。

1.3 样品硬度及糖度测量

光谱采集完成后,对水蜜桃样品进行穿刺试验。为了保 证信息的一致性,在采集光谱的相同位置进行穿刺试验以获 得相应的样品硬度。使用配备 3 mm 圆柱形探针的美国 FTC 质构仪(Food Technology Corporation, USA)及配套软件进 行穿刺试验,力量元量程为 100 N,加载速度 5 mm·min⁻¹, 触发力设为 0.1 N,最大穿刺深度为 10 mm。记录每次测量 时得到的硬度数据,单位为 N。测量完成后,同样取光谱测 量相同 4 个位置处的果肉,榨汁后将果汁倒入折射式数字糖 度计 PAL-1(ATAGO, Japan)中进行糖度测量。每次测量重 复三次,取两次相同的值作为该位置的糖度真值。

1.4 样本集划分

在建立判别模型之前,首先将样本分为校正集、预测集。利用校正集数据对模型进行训练,之后利用预测集数据 对模型进行性能测试^[8]。实验中对样本进行异常值测试,剔 除异常点后使用 K-S 算法将样本划分为校正集和预测集。 表1分别给出了两种检测方式下糖度和硬度的校正集和预测 集的样品个数,样本集覆盖了足够大的数据范围,且校正集 的数据范围均大于预测集,说明这些数据具有代表性且能够 建立良好的近红外模型。

表	1 杆平	集え	」分
Table 1	Sampl	e set	division

	漫透射				 漫反射			
样本集	糖度/°Brix		硬度/N		糖度/°Brix		硬度/N	
	校正集	预测集	校正集	预测集	校正集	预测集	校正集	预测集
样品个数	267	89	261	86	261	81	265	84
范围	8.1~16.9	$9 \sim 15.1$	0.8~8.52	0.79~8.04	7.6~16.9	8.1~16.3	0.72~9.34	0.79~7.78

1.5 数据处理及分析方法

偏最小二乘回归(PLS)是最常用的多元线性校正技术, 广泛应用于可见/近红外光谱分析中,用以定量预测水果内 部品质^[9]。PLS可以同时分解光谱矩阵 *X*和浓度矩阵 *Y*,消 除无用的噪声信息,使 PLS 在实际应用中具有更强的鲁棒 性^[10-11]。PLS 的回归模型如式(1)

$$Y = bX + e \tag{1}$$

式(1)中,**b**为回归系数的向量,e为模型残差。

PLS将光谱数据投射到一组称为潜在变量(LVs)的正交 因子上,并使用简单交叉验证及其他方法来避免由于使用太 小或太大的 LVs 而导致的欠拟合或过拟合。使用 Unscrambler 软件对数据进行 PLS 分析,将校正模型应用于预测集或 验证集中桃子糖度和硬度参数的预测,并通过预测均方根误差(RMSEP)和校正均方根误差(RMSEC)、预测相关系数(*R*_v)和校正相关系数(*R*_c)等统计参数进行评价。

无信息变量消除(UVE)基于 PLS 回归系数挑选波长, 将一定数目的随机变量加入光谱矩阵之中,通过交叉验证建 立 PLS 模型,计算回归系数与标准偏差的比值,从而选取有 效光谱信息。连续投影算法(SPA)是一种前向选择算法,利 用向量空间中的一个简单投影操作来选择共线性最小的变量 子集,并使用均方根误差(RMSE)进行评估^[12]。

2 结果与讨论

2.1 光谱特性分析

水蜜桃4个贮藏阶段的平均光谱如图3所示,对于漫透

射方式[图 3(a)],由于光谱前端(350~515 nm)和光谱后端 (975~1150 nm)信号较弱,无有效信息,故直接选择波长范 围为 515~975 nm (600 个变量)。同样,将漫反射方式测得 光谱的有效波长范围定为 465~950 nm (640 个变量)[图 3 (b)]。从图 3 中可以看出,在 650~680 nm 范围内,不同贮 藏期的水蜜桃光谱差异较大,主要是因为贮藏过程中色素的 变化导致波峰的偏移及强度变化。另外,在 716 nm 附近的 波峰主要与 C—H和 O—H键的倍频伸缩振动有关^[13];随着 贮藏天数的增加,桃内水分流失减少了 O—H 键的吸收且果 内透光性增强,波峰强度不断增大。而在 805 nm 附近的波 峰主要与 C—H及 N—H 键有关。总体来看,贮藏天数的增 加对漫透射方式采集的光谱影响较大,因为漫透射方式主要 采集水果的内部信息,而漫反射方式采集的更多是样品表面 的信息。

图 3 不回贮藏期水量桃的平均无谱 (a):漫透射;(b):漫反射

Fig. 3 Average spectrum of peach in different storage days

2.2 硬度和糖度真值分析

表2显示了不同贮藏天数水蜜桃糖度和硬度的测量值。 可以看出,随着水蜜桃贮藏天数的增加,硬度的平均值呈下 降趋势,而糖度则相反,总体呈上升趋势。水蜜桃糖度在初 期贮藏时先下降,贮藏时间延长,水蜜桃开始松软,糖度增 加,风味慢慢提高,与前人研究一致^[7]。糖度在贮藏期间增 加了 0.4%~3.31%,硬度则下降了 28.1%~58.8%。变异

表 2 不同贮藏天数下水蜜桃的参数变化 Table 2 Parameter changes of peach in

different storage days

参数	天数	平均值	最大值	最小值	标准差	变异系数 CV/%
糖度	0	12.37	16.8	7.7	1.68	13.58
	2	11.64	16.9	7.6	1.85	15.89
	4	12.42	16.8	9.1	1.69	13.61
	6	12.78	15.1	10.1	1.45	11.35
硬度	0	5.02	10.20	1.92	1.93	38.45
	2	3.61	6.06	1.53	1.04	28.81
	4	2.65	5.04	1.27	0.88	33.21
	6	2.07	4.28	0.72	0.88	42.51

系数(CV)衡量的是测量值在样本间的相对变化。糖度的 CV 值基本变化不大,和平均值的变化基本相符;硬度的 CV 值 则在 28.81%~42.51%之间变化,且在最后一批达到最大, 说明随着贮藏时间的延长,样品的硬度在同一阶段变得更不 稳定^[4]。

在贮藏过程中,水蜜桃的重量由 147.22 g 逐步降低至 107.46 g,果实重量的下降主要是水分减少引起的。重量、 硬度 与 贮藏 天数 呈 高 度 负 相 关 ($R_1 = -0.967$, $R_2 = -0.983$),糖度与贮藏天数呈正相关($R_3 = 0.54$)。可以看 出,水蜜桃的糖度、硬度及重量与贮藏天数均有较好的相关 度。

2.3 水蜜桃糖度和硬度的预测模型

2.3.1 预处理

使用偏最小二乘回归建立水蜜桃的糖度及硬度预测模型。为防止过拟合或欠拟合,LVs的数量设定为1~20。根据划分好的校正集和预测集建立水蜜桃的PLS模型,并使用多种预处理方法(S-G平滑、归一化Normalization、多元散射校正MSC、基线校正Baseline)对光谱进行处理,结果见表3。对于糖度预测,漫透射采集的光谱数据建立的PLS模型能够更好地预测不同贮藏阶段的糖度变化,采用MSC预处

理后,得到的 LVs 小,两个相关系数接近, R_p 为 0.886, RMSEP 为 0.727;漫反射下,最佳模型的 R_p 为 0.820, RM-SEP 为 1.003,预处理方法为 S-G 平滑+3。在硬度模型中, 效果最好的是漫反射,使用 Normalization 预处理后,最佳 R_p 为 0.835, RMSEP为 0.833。漫透射下,使用 MSC 预处 理后,模型 LVs 最小, R_p 为 0.797, RMSEP 最小为 0.975。 图 4(a,b)分别为两种检测方式水蜜桃糖度和硬度的最佳 PLS 模型。

参数	检测方式	预处理方法	LVs	$R_{ m p}$	$R_{ m c}$	RMSEP	RMSEC
		无	14	0.873	0.911	0.751	0.711
		S-G+3*	14	0.885	0.874	0.716	0.836
	温活时	S-G+5*	14	0.889	0.865	0.705	0.865
	便透别	Normalization	13	0.863	0.907	0.815	0.725
		MSC	12	0.886	0.902	0.727	0.744
糖菌(880)		Baseline	13	0.868	0.886	0.768	0.797
相度(SSC)		无	9	0.796	0.803	1.068	1.014
		S-G+3*	11	0.820	0.822	1.003	0.968
	湯后母	S-G+5*	13	0.818	0.810	0.995	0.997
	侵区别	Normalization	8	0.786	0.791	1.085	1.040
		MSC	8	0.817	0.815	1.02	0.985
		Baseline	9	0.796	0.802	1.072	1.016
		无	10	0.797	0.803	0.982	0.967
		S-G+3*	10	0.798	0.798	0.978	0.979
	温活时	S-G+5 *	10	0.799	0.797	0.977	0.982
	便透射	Normalization	7	0.794	0.800	0.982	0.975
硬度 (Firmness)		MSC	7	0.797	0.798	0.975	0.978
		Baseline	10	0.794	0.804	0.988	0.975
		无	7	0.831	0.854	0.846	0.874
		S-G+3*	7	0.827	0.849	0.853	0.889
	退亡的	S-G+5*	7	0.818	0.844	0.872	0.901
	侵区别	Normalization	6	0.835	0.851	0.833	0.883
		MSC	6	0.828	0.854	0.852	0.874
		Baseline	7	0.828	0.856	0.851	0.869

表 3 不同预处理方法下糖度和硬度模型对比 Table 3 Comparison of sugar and firmness models under different pretreatment methods

注:*:平滑窗口宽度

2.3.2 特征波长选择

为了消除无用变量,进一步优化预测模型的性能,提高 检测速度。采用 UVE 和 SPA 两种波长选择算法对光谱变量 进行筛选,选取有效变量建立 PLS 模型。

使用 UVE 进行波长选择时,设定随机变量数为 200,分 别对两种检测方式下的糖度和硬度光谱进行波长选择,选择 有效的波长点用作后续建模。UVE 处理结果如图 5,上下虚 线为阈值,阈值内的光谱变量剔除,阈值外的光谱变量保留 作为选中的有效变量。最终通过 UVE 选取的变量数及模型 效果如表 4 所示。

同样,使用 SPA 从直接法筛选波长后的光谱变量中挑选特征波长,用于糖度和硬度的评价。SPA 筛选变量之前,分别设定最小、最大变量数为 10 和 100,通过 SPA 程序计算的均方根误差(RMSE)值来确定所选变量的最优数量。SPA 挑选的波长点如图 5(b)所示,这些波长点覆盖了大部分有效信息,在 UVE 的基础上进一步简化模型。波长选择后,将挑选的波长用于建立 PLS 模型,最终挑选的变量数及模型效果见表 4。

表 4 为光谱变量进行特征波长选择后建立的 PLS 模型。

可以看到,使用波长选择算法后,建立的糖度模型效果不如 预处理后的糖度模型。可能是因为糖度在光谱上有多重表 征,且处理前已经将无信息的波长剔除,留下的均为有效波 长,进行波长选择后反而去除了有用的信息,从而导致模型 效果变差。而硬度的变化主要受水分影响^[6-7],只跟光谱的 特定波段有关。因此,SPA和 UVE 均能在一定程度提高硬 度模型效果。漫透射、漫反射方式下硬度的最好模型分别是 SPA-PLS和 UVE-PLS,其中 SPA-PLS的 *R*_p为 0.798, RM-SEP为 0.976, UVE-PLS 的 *R*_p为 0.841, RMSEP 为 0.829, 两个模型均比预处理后建立的模型效果好,且简化了模型, 如图 6(a,b)所示。

2.4 光谱相关性分析

图 7 为水蜜桃糖度和硬度与光谱的回归系数图,系数越 大代表该波长所占权重越大,重要程度越高。可以看出,糖 度有较多高回归系数的波段,规律性不强;而硬度的高回归 系数多是在波峰波谷处。这同样解释了波长选择算法得到的 硬度模型效果好,糖度模型效果不佳的原因,也说明挑选几 个波长用于预测硬度变化是可行的。

(a):漫透射;(b):漫反射

(a): Diffuse transmittance; (b): Diffuse reflectance

图 5 两种波长选择算法

Fig. 5 The results of two wavelength selection algorithms

(a): The selected result of UVE; (b): The selected result of SPA

此外,实验所建立的模型能够较准确地预测各贮藏阶段 水蜜桃的糖度及硬度,再结合糖度、硬度与贮藏天数的关 系,可以得到水蜜桃的贮藏天数。本实验得出,最佳贮藏天 数为 2~4 d,这个阶段的水蜜桃糖度有所提高,硬度下降但 还未腐烂,宜于食用。

种光谱。根据有效信息直接选择波长,并结合多种预处理方法,建立水蜜桃糖度和硬度的 PLS 回归模型。结果表明:漫透射光谱建立的模型中,MSC 为糖度和硬度的最佳预处理方法, R_p分别为0.886和0.797; S-G 平滑+3、标准化预处理方法则分别优化了漫反射下水蜜桃的糖度、硬度模型, R_p分别为0.820和0.835。可以看出,漫透射方式预测水蜜桃的糖度更佳,而漫反射预测硬度更佳。主要原因是随着贮藏天数增加,果肉松软,漫透射方式下光源透光性增强,能够获取更多水果内部的信息;而硬度主要受果皮变化影响,漫

3 结 论

采用动态在线检测设备,采集四个贮藏阶段水蜜桃的两

247

第 41 卷

Table 4 PLS models of two wavelength selection algorithms								
参数	检测方式	样本选择算法	变量个数	$R_{ m p}$	$R_{ m c}$	RMSEP	RMSEC	
	油 迷 叶	UVE	245	0.849	0.821	0.827	0.984	
佐 広 (000)	便透射	SPA	54	0.785	0.807	0.959	1.018	
裙度(SSC)	湯后舟	UVE	37	0.694	0.794	1.236	1.034	
	 便	SPA	54	0.709	0.699	1.229	1.216	
硬度 (Firmness)	温活时	UVE	264	0.775	0.800	1.028	0.974	
	便透射	SPA	15	0.798	0.789	0.976	0.998	
	油厂山	UVE	113	0.841	0.870	0.829	0.829	
	 () () () () () () () () () (SPA	37	0 824	0 841	0.856	0.910	

两种波长选择算法的 PLS 模型

表 4

(a):漫反射;(b):漫透射

Fig. 6 Optimal model after characteristic wavelength selection

(a): Diffuse reflectance; (b): Diffuse transmittance

(a): SSC; (b): Firmness

反射方式能够更多地获取水蜜桃表皮的信息。模型均能够较 好地预测不同贮藏阶段水蜜桃的糖度和硬度,结合贮藏天数 与硬度和糖度的变化,能够预测出水蜜桃的最佳贮藏天数。 本实验桃子的最佳贮藏期为 2~4 d。

另外,使用 SPA 和 UVE 算法进行波长选择,结果发现 两种波长选择算法可以优化硬度模型,但不能优化糖度模 型。分析了糖度和硬度与光谱的相关性,糖度在光谱多处波 长处具有高回归系数,硬度的相关参数均在波峰波谷附近, 充分解释了两种算法只能优化硬度模型的原因。根据光谱范 围和测量的硬度参数得知,硬度参数与单个波长之间的相关 性变化很大,说明使用几个波段用来预测硬度是可行的,需 要进一步研究。本研究可以指导售卖期间水蜜桃的贮藏,也 能为水蜜桃采摘期提供参考。

References

- [1] Pan L, Lu R, Zhu Q, et al. Postharvest Biology and Technology, 2015, 102: 42.
- [2] Wang A, Xie L. Journal of Food Engineering, 2014, 143(12): 17.
- [3] Moscetti R, Raponi F, Ferri S, et al. Journal of Food Engineering, 2018, 222: 139.
- [4] Zhu G, Tian C. Journal of Food Process Engineering, 2018, 41(6): e12810.
- [5] PAN Lei-qing, LIU Ming, HANG Dong-hai, et al(潘磊庆,刘明,韩东海,等). Journal of Nanjing Agricultural University(南京农业 大学学报), 2013, 36(4): 116.
- [6] Huang Y, Lu R, Chen K. Journal of Food Engineering, 2018, 222: 185.
- [7] Uwadaira Y, Sekiyama Y, Ikehata A. Heliyon, 2018, 4(2): e00531.
- [8] GUO Wen-chuan, WANG Ming-hai, GU Jing-si, et al(郭文川, 王铭海, 谷静思, 等). Optics and Precision Engineering(光学精密工程), 2013, 21(10): 2721.
- [9] Wang H, Peng J, Xie C, et al. Sensors, 2015, 15(5): 11889.
- [10] Mahesh S, Jayas D S, Paliwal J, et al. Food and Bioprocess Technology, 2015, 8(1): 31.
- [11] Li J, Wang Q, Xu L, et al. Food Analytical Methods, 2019, 12(1): 12.
- [12] Tian X, Fan S, Li J, et al. Infrared Physics & Technology, 2019, 102: 102979.
- [13] Maeda H, Ozaki Y, Tanaka M, et al. Journal of Near Infrared Spectroscopy, 1995, 3(4): 191.

Detection on Firmness and Soluble Solid Content of Peach During Different Storage Days

LIU Yan-de, ZHANG Yu, JIANG Xiao-gang, SUN Xu-dong, XU Hai, LIU Hao-chen

School of Mechatronics & Vehicle Engineering, East China Jiaotong University, National and Local Joint Engineering Research Center of Fruit Intelligent Photoelectric Detection Technology and Equipment, Nanchang 330013, China

Abstract Soluble solid content (SSC) and firmness are two important indexes of peach, which determine its internal quality. However, the water in the peach fruit is lost, the surface begins to soften and rot, and the internal quality changes during transportation or sale. This paper aims to investigate the feasibility of visible/near-infrared spectroscopy(VIS-NIR) in predicting SSC and firmness of peach during different storage days and to predict the optimal storage period of peaches further. The spectrum of peach in 4 storage stages was collected by diffuse transmittance and reflectance, and the sugar and hardness were measured. The mean spectrum of peach in four stages was analyzed. The spectral intensity increased with the storage days, and the peak shift was caused by the changes in the color and pigment of the peel in the region of $650 \sim 680$ nm. Meanwhile, the changes in SSC and firmness were analyzed. The SSC gradually increased during storage, while the firmness rapidly decreased during storage. Finally, the SSC increased by 3.31% and the firmness decreased by 58.8%. Pretreatment methods such as multivariate scattering correction(MSC), S-G smoothing, normalization and baseline are used to reduce the impact of noise and errors in the spectrum, and uninformative variable elimination (UVE) and successive projections algorithm (SPA) is used to select characteristic wavelengths, then the partial least squares regression(PLS) is used to establish prediction models for SSC and firmness. Analyzing the PLS regression coefficient of SSC and firmness with the mean spectrum, it is found that SSC has many high regression coefficient bands, and the high regression coefficient of firmness is near the peaks and troughs. Therefore, the SSC model established by the characteristic wavelength obtained by SPA and UVE is not good, while the firmness model is good. The results show that the best prediction correlation coefficient (R_p) and root mean square error of prediction (RMSEP) of SSC under the diffuse transmittance and reflectance detection methods are 0.886, 0.727, 0.820, 1.003, respectively. The pretreatment methods are MSC and S-G smoothing with 3 smoothing window width, respectively. In addition, the SPA-PLS model of firmness established by diffuse transmittance uses 15 spectral variables to obtain R_p and RMSEP of 0.798 and 0.976. The UVE-PLS model established by the diffuse reflectance uses 113 spectral variables to obtain R_p and RMSEP of 0.841 and 0.829. It can be seen that the diffuse transmittance method predicts SSC better, and the diffuse reflectance predicts the firmness better during peach storage. The SSC and firmness prediction models established by VIS-NIR can reliably predict the changes of SSC and firmness during the storage of peaches and have certain reference value to guide picking and selling time and reduce decay,

Keywords Visible/Near infrared spectroscopy; Storage of peach; Soluble solid content and firmness; Partial least squares regression